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Abstract. We discuss an inclusive approach to the measurement of the e+e− → π+π− cross–section by
the radiative return method without photon tagging. The essential part of this approach is the choice of
rules for event selection which provide rejection of events with 3 (or more) pions and decrease the final–
state radiation background. The radiative corrections to the initial–state radiation process are computed
for DAΦNE conditions, using the quasi–real electron approximation for both, the cross–section and the
underlying kinematics. The two cases of restricted and unrestricted pion phase space are considered. Some
numerical calculations illustrate our analytical results.

1 Introduction

The recent high precision measurement of the muon
anomalous magnetic moment (g−2)µ [1] has boosted inter-
est in renewed theoretical calculations of this quantity [2],
since any difference between the experimental value and
the theoretical evaluations based on the Standard Model
(SM) may open a window into possible new physics [3].
While conclusions about posssible discrepancy with the
SM are premature [4], the Brookhaven based experiment
is now planning a new measurement with three times bet-
ter accuracy, which may create further challenges to the
theory. Presently, there are two main sources of theoretical
uncertainty in the calculation, namely the impact of the
light-by-light contribution [5–7] and the estimate of the
error from the hadronic vacuum polarization contribution
to (g − 2)µ. In this paper we address the question of this
error, for which different groups give different results [8,
9].

The problem of the hadronic vacuum polarization con-
tribution is that it cannot be calculated analytically be-
cause perturbative QCD loses its predictive power at low
and intermediate energies, where, on the other hand, the
effect is the largest. However one can evaluate this had-
ronic term from the data on electron-positron annihilation
into hadrons by using a dispersion relation [10]. The nec-
essary condition for a theoretical error matching the ex-
perimental accuracy reached in the (g−2)µ measurement,
is the knowledge of the total hadronic cross section with
better than one per cent accuracy. The recent precision
measurements of the total hadronic cross-section by the

CMD-2 [11] and BESII [12] collaborations were included
in the new analysis of [13,14]. While this reduces the er-
ror in the hadronic contribution to the shift in the run-
ning electromagnetic coupling, for the muon (g-2) value it
is mandatory to perform new measurements of the total
cross section at energies below 1.4 GeV (in particular, in
the e+e− → π+π−- channel) with at least one per cent
accuracy. Such accurate measurement will then be impor-
tant not just for the muon anomalous magnetic moment
but also for testing the effective fine structure constant.

In the last years, the idea to use radiative events in
electron-positron collisions for scanning of the total had-
ronic cross section has become quite attractive. The ra-
diative return approach was first discussed long ago, and
the lowest-order cross sections for the radiative process
of electron-positron annihilation into a pair of charged
fermions or scalar bosons were calculated [15]. This sub-
ject was subsequently studied in several papers (see, for
example, [16–20]), where higher-order radiative correc-
tions were taken into account.

Due to differences in the systematic uncertainties in
the measurement, the radiative return approach has sev-
eral advantages when compared to the conventional en-
ergy scan: for example, luminosity and beam energy effects
are accounted for only once. For variable total hadronic en-
ergies from the 2mπ threshold up to 1.02 GeV, the ideal
machine for scanning the total cross section, using the
radiative return method, appears to be the DAΦNE ac-
celerator, operating at the Φ resonance, together with the
KLOE detector [18,21,22]. DAΦNE measurements can be-
come quite competitive to the conventional direct cross
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section scan, and, as mentioned, have certain advantages
due to the systematics. The radiative return method al-
lows to perform precise measurements of the hadronic
cross sections in the ρ resonance region. The high accu-
racy of scanning is provided by the high resolution mea-
surement of the pion 3-momenta (and consequently the
invariant mass) with the KLOE drift chamber. Recently
the first preliminary results of such measurements of π+π−
production cross section below 1 GeV have been reported
[22].

In our previous paper [20] the analysis of Initial State
Radiation (ISR) effects, which provide the basis for the
radiative return strategy, has been performed for the re-
alistic conditions of the KLOE detector. It was assumed
that both the energy of the photon in the calorimeter, and
the invariant mass of the π+π− - system were measured.

Notice that the KLOE detector allows to register pho-
tons only outside two narrow cones along the beam direc-
tions (the so-called blind zones). Because of this geometri-
cal restriction, most of the ISR events become inaccessible
for tagging and cannot be recorded by the photon detec-
tor. This decreases the statistics and, thus, results in lesser
precision. In order to avoid this problem and, moreover, to
fully exploit the possibility of high precision measurement
of the two charged pions with the drift chamber [18,21],
it was proposed1 to make the photon tagging redundant.
The idea is to use an Inclusive Event Selection (IES) ap-
proach, in which only the invariant mass of the final pions
is measured, and the ISR photon remains untagged.

As briefly discussed in [20], one of the main advantages
of the IES strategy is the rise of the corresponding cross
section caused by the ln(E2/m2) enhancement (here E is
the beam energy and m is the electron mass) due to the
possibility to include events with ISR collinear photons
which, otherwise, belong to the blind zones. As shown
in [23], the number of such untagged photon events ex-
ceeds by about a factor three the number of events with
the tagged photon (if the opening angle of the blind zone
equals to 10o).

Of course, in order to avoid uncertainties in the inter-
pretation of IES approach and to have the possibility to
describe IES in terms of ISR events, some additional event
selection criteria should be imposed. The corresponding
additional restrictions should make the photon tagging re-
dundant, but at the same time should guarantee the sup-
pression of the main background caused by events from
Φ → π+π−π0 decay.

In this paper we present the analytical calculation of
the Born cross section of ISR process

e−(p1) + e+(p2) → γ(k) + π+(p+) + π−(p−) (1)

and the QED radiative corrections (RC) to it for IES
setup, accounting for the additional kinematical con-
straints on the event selection, which can be realized at
KLOE. The physics motivation for these constraints is
discussed in Sect. 2.

1 Our attention was first drawn to this idea by G.Venanzoni
(see also [20])

The Born IES cross section is calculated in Sect. 3.
Note that for a chosen set of selection rules, IES cross
section at the Born level coincides with the tagged photon
events cross section as given in [16], provided that the final
pion phase space is unrestricted. But we consider also the
realistic case when the pion phase space is restricted.

In Sect. 4 we discuss the RC to the Born cross section
caused by the emission of real and virtual photons. At
the RC level, the IES cross section differs from the tagged
photon result because of the contribution of double pho-
ton bremsstrahlung. The situation here is similar to the
case of radiative corrections in DIS with detected lepton
(the analogue of the tagged photon events) or hadrons
(analogous to the IES). In the latter case, the radiative
corrections factorize while in the former they include by
necessity some integrals over hadronic cross section that
have to be extracted from experimental data. This fact
certainly makes the IES approach more advantageous. In
Sect. 5 the cancellation of the infrared and collinear pa-
rameters, used in the calculations of radiative corrections,
is demonstrated, and the expression for the total photonic
contribution to the radiative corrections is given. In Sect. 6
we discuss also possible contribution of the e+e−–pair pro-
duction into the IES cross section if the e+e−π+π− final
state is not rejected by the analysis procedure. Our Con-
clusion contains a brief summary and the discussion of the
background processes which may contribute into the IES
cross section.

2 IES selection rules

As mentioned in the Introduction, the main condition of
the IES approach is the precise measurement of the di–
pion invariant mass in process (1). In addition, restric-
tions must be imposed in order to select final states with
only π+π− + nγ, excluding π+π−π0. Finally, we have to
add some constraints in order to reduce contributions from
final state radiation (FSR). As an added bonus, such con-
traints also simplify the theoretical calculation of the ra-
diative corrections.

Rejection of the 3–pion final state in process (1) can be
done selecting events with an appropriately small differ-
ence between the lost (undetected) energy and the mod-
ulus of the lost 3–momentum in process (1). In terms of
the measured pion 3–momenta, this restriction reads [18,
20,21]

2E − E+ − E− − |PΦ − p+ − p−| < ηE , η � 1, (2)

where E is the beam energy, E± =
√

p2± − m2
π is the

energy of π±, and mπ is the pion mass. PΦ is the to-
tal initial–state 3–momentum which, at DAΦNE, is non-
zero, due to a small acollinearity in the beams, |PΦ| =
12.5MeV. If the chosen parameter η is small enough (≤
(mπ/E)2), constraint (2) allows to avoid the undetected
π0 and to retain only the undetected nγ system. Inequal-
ity (2) can be rewritten in terms of the total energy Ω and
modulus of the total 3–momentum |K| of all photons in
the reaction e+ + e− → π+ + π− + nγ as
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Ω − |K| < ηE. (3)

The optimal value η = 0.02 decreases also the FSR back-
ground [18].

The next constraint selects such events, where at n = 1
the undetected photon is collinear with the emitting elec-
tron (or positron). The collinear events considered here
are those in which the photon belongs to a narrow cone
with opening angle 2θ0 (θ0 � 1) along the electron beam
direction (the blind zone for the KLOE detector). This
constraint reads

Kp1 > |K|Ec0, c0 = cos θ0 , (4)

where p1 is the 3–momentum of the electron and θ0 can be
chosen to be 5o ÷ 6o. Due to this constraint, the collinear
photon radiated by the initial electron contributes to the
observed IES cross section and induces a ln(E2θ2

0/m
2) en-

hancement, which, at DAΦNE, makes the IES cross sec-
tion a few times larger than in the tagged photon case.
Moreover, the collinear constraint provides the possibil-
ity to apply the well known quasi–real electron (QRE)
method [24] to calculate radiative corrections. Even at the
Born level, the difference between the exact result and the
corresponding QRE approximation is negligible (see for
details Sect. 3). Selection rules (2), (3) and (4) imply pre-
cise measurements of the pion 3–momentum that can be
provided by the KLOE drift chamber.

Note also that in the Born approximation (n = 1)
inequality (3) is always satisfied, and, therefore, the selec-
tion rules (3) and (4) imply non–trivial consequences only
through the contribution to the radiative corrections from
two hard photon emission.

Because of the existence of the blind zones, the KLOE
detector cannot provide the detection of the final π+ and
π− inside the full phase space, picking out events with
pion polar angles in the region

θm < θ± < π − θm . (5)

In principle, θm can be taken to be about 10o, but, as
shown by the Monte Carlo calculations [17,18], the choice
of θm influences also the value of the FRS background.
The optimal value of θm for DAΦNE conditions is 20o.
[18]

Usually, the restricted pion phase space can be taken
into account by introducing an acceptance factor A(θm).
The calculation of this factor is very simple for a nonra-
diative process, but for the ISR process, and the RC to
its cross section, it is non–trivial. The analytical form of
A(θm) can be derived in the framework of QRE approx-
imation. To illustrate the problem, in the following we
perform calculations for both unrestricted and restricted
pion phase space.

3 Born approximation

To lowest order in α, the differential cross section of pro-
cess (1) can be written in terms of the leptonic Lµν and
hadronic Hµν tensors as (see [15])

dσB =
8π2α2

sq4 Lγ
µν(p1, p2, k)Hµν

α

4π2

d3k

ω

d3p+d3p−
16π2E+E−

×δ(q − p+ − p−) , (6)

where ω is the energy of photon, and the hadronic tensor is
expressed via the pion electromagnetic form factor Fπ(q2)
as follows

Hµν = −4|Fπ(q2)|2p̃−µp̃−ν , p̃−µ = p−µ − 1
2
qµ ,

q = p1 + p2 − k = p+ + p− .

The pion electromagnetic form factor defines the total
cross section σ(q2) of the process e+ + e− → π+ + π−, by
means of relation

|Fπ(q2)|2 =
3q2σ(q2)
πα2ζ

, ζ =
(
1 − 4m2

π

q2

) 3
2

. (7)

In the case of unrestricted (full) pion phase space, the
integration of the hadronic tensor can be performed in
invariant form [15]

1
16π2

∫
Hµν

d3p+d3p−
E+E−

δ(q − p+ − p−) =
q4

8π2α2σ(q2)g̃µν ,

g̃µν = gµν − qµqν

q2 , (8)

whereas for the restricted case we have first to contract
the tensors in (6) and then to integrate the result over the
pion phase space.

The leptonic tensor on the right–hand side of (6) for
the case of collinear ISR along the electron beam direction
is well known [15,25]

Lγ
µν(p1, p2, k) =

[
(q2 − t1)2 + (q2 − t2)2

t1t2
− 2m2q2

t21

]
g̃µν

+
4q2

t1t2
p̃1µp̃1ν +

(
4q2

t1t2
− 8m2

t21

)
p̃2µp̃2ν , (9)

where

p̃1,2µ = p1,2µ − p1,2q

q2 qµ , t1 = −2kp1, t2 = −2kp2,

s = 2p1p2, q2 = s + t1 + t2,

and we neglect terms of the order |m2/t2| which are always
below the required accuracy2. The contraction of the lep-
tonic tensor with g̃µν that is necessary to use in the case
of unrestricted pion phase space reads

Lγ
µν(p1, p2, k)g̃µν = 2F ,

F =
(q2 − t1)2 + (q2 − t2)2

t1t2
− 2q2m2

t21
. (10)

2 Note that formula (9) corresponds to the radiation along
the electron beam direction (see also inequality (4)). To ac-
count for the radiation along the positron we have to multiply
all results for the cross sections by a factor of 2 (see the end of
Sect. 6)
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In the case of restricted phase space we have to use the
following relation

Lγ
µν(p1, p2, k)Hµν = 4q2|Fπ(q2)|2R , (11)

R = −m2
π

q2 F +
q2(χ1 + χ2) − χ2

1 − χ2
2

t1t2
− χ1

t1
− χ2

t2

+
2m2χ2

t21

(
χ2

q2 − 1
)

, χ1,2 = 2p1,2p− .

Therefore, the differential cross section of the process (1)
in the Born approximation can be written as

dσB
F = σ(q2)

α

2π2F
d3k

ω
, (12)

dσB
R =

12σ(q2)R
sζ

α

4π2

d3k

ω

|p−|dE−dc−
E+

dϕ−
2π

×δ(2E − ω − E+ − E−) , (13)

where c− = cos θ− and θ−, ϕ− are polar and azimuthal
angles of the negative pion respectively (we take Z axis
along the p1 direction).

It seems at first sight that one can perform the trivial
integration with respect to the azimuthal angle ϕ− on the
right–hand side of (13) because the quantity R does not
contain any ϕ−–depending term. But in the general case
the pion energies E+ and E− depend on ϕ−. Moreover,
the upper limit of integration over c− for the ISR events
with collinear photon along the electron beam direction is
smaller than cm = cos θm and depends on ϕ− as well, i.e.

−cm < c− < cmax , cmax < cm , (14)

where cmax must be determined from the 3–momentum
conservation, provided that c+ = cos θ+ = −cm. There-
fore, in the case of the restricted pion phase space, it is
necessary to first integrate over c− and then over ϕ−.

Let us now perform the integration with respect to the
photon angular phase space on the right–hand side of (12).
It is convenient to choose X axis along the PΦ direction.
In the laboratory frame

p1 = (E, 0, 0, |p1|) , p2 = (E, |PΦ|, 0,−p2z) ,

p2z = E
(
1 − P2

Φ

2E2

)
(15)

and

t1 = −2ω(E − |p1| cos θ) ,

t2 = −2ωE
[
1 +

(
1 − P2

Φ

2E2

)
cos θ

]
+2ω|PΦ| sin θ cosφ

]
,

s = 4E2 − P2
Φ,

q2 = 4E2 − 4Eω − P2
Φ

(
1 − ω

E
cos θ

)
+2ω|PΦ| sin θ cosφ , (16)

where θ and φ are polar and azimuthal angles of the pho-
ton radiated in the initial state. Keeping terms of the order
P2

Φ/E
2 and θ2

0, we can use the following list of integrals∫
dO

−t2
=

πθ2
0

4ω0E
,∫

dO

−t1
=

π

ω0E

[(
1 − P2

Φ

4E2

)
L0 − θ2

0

12

]
,∫

dOm2

t21
=

π

ω2
0

(
1 − P2

Φ

2E2

)
,∫

dOt2
t1

= 4π
[(

1 − P2
Φ

4E2

)
L0 − θ2

0

3

]
,∫

dO

t1t2
=

π

4ω2
0E

2

[(
1 − P2

Φ

4E2

)
L0 +

θ2
0

6

]
,

ω0 =
4E2 − q2 − P2

Φ

4E
,

L0 = ln
E2θ2

0

m2 ,

dO = d cos θdφ . (17)

When evaluating these integrals we systematically ne-
glected small terms of order P2

Φθ
2
0/E

2. Within such ap-
proximation we can use the substitution

|PΦ| sin θ cosφ → 0, P2
Φ cos θ → P2

Φ , (18)

in the expressions for the invariants t1 and t2 in (17). With
the same accuracy we can write

ωdω =
ω0dq

2

4E

(
1 +

P2
Φ

2E2

)
. (19)

Combining (12), (17) and (19), we arrive at the distri-
bution over the pion squared invariant mass q2, for unre-
stricted pion phase space

dσ
B

F

dq2 =
σ(q2)
4E2

α

2π

[(
q4

8ω0E
+

q2

2E2 +
ω0

E

) (
1 +

P2
Φ

4E2

)
L0

− q2

2ω0E
+

θ2
0

6

(
q4

8ω0E
+

q2

2E2 − 2ω0

E

)]
. (20)

To guarantee only one per cent accuracy one can neglect
terms proportional to P2

Φ/4E
2 and θ2

0/6 in (20) because
their contribution into the IES cross section is of the rel-
ative order 10−4. Such procedure leads to the well known
result corresponding to the QRE approximation [24]

dσ
B

F

dq2 =
σ(q2)
4E2

α

2π
P (z, L0) ,

P (z, L0) =
1 + z2

1 − z
L0 − 2z

1 − z
,

z =
q2

4E2 . (21)

Thus, the QRE approximation appears to be sufficient
for a description of the IES cross section and corresponds
to a one per cent precision even at the Born level.
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Consider now the case of the restricted pion phase
space. First, the δ–function on the right–hand side of (13)
has to be used to perform the integration with respect to
E−. Then within chosen accuracy we obtain

|p−|dE−
E+

δ(2E − ω − E+ − E−)

=
|p−|2

|p−|(2E − ω) + E−(ωcγ− − |PΦ|s− cosϕ−)
, (22)

where

cγ− = cos θc− + sin θs− cos (φ − ϕ−) ,

s− = sin θ− ,

ω = ω0

(
1 +

P2
Φ

4E2

)
.

Now let us express E− in terms of the photon energy ω and
angles of the photon and negative pion, using the energy–
momentum conservation. The result can be written in the
following form

E− =
AB − C

√
B2 − 4m2

π(A2 − C2)
2(A2 − C2)

,

A = 2E − ω,

B = 4E(E − ω) − |PΦ|2 ,

C = ωcγ− − |PΦ|s− cosϕ− . (23)

To find the energy of the positive pion it is necessary
to use the relation 2E−ω = E++E−. Having expressions
for the pion energies, we can apply conservation of the
Z–component of 3–momentum at c+ = −cm

−|p+|cm + |p−|c− + ω cos θ = 0 (24)

to derive the upper limit cmax of the variable c−. In (24)
both |p−| and |p+| are functions of ω, c−, cos θ and
cos (φ − ϕ−). Therefore, to reach the same accuracy as
in (20) for the case of the restricted pion phase space,
the differential distribution over the pion invariant mass
squared has to be taken in the form

dσ
B

R

d q2 =
3σ(q2)
4E2ξ

α

2π
ω0

E

(
1 +

P2
Φ

2E2

)
(25)

×
1∫

c0

d cos θ

2π∫
0

dφ

2π

2π∫
0

dϕ−
2π

cmax∫
−cm

d c−
R|p−|2

A|p−| + CE−
,

where c0 = cos θ0 and the quantities A, C are defined in
(23). The analytical integration on the right–hand side of
(25) is not available and the task of integration can be left
for numerical calculation.

The result is very much simplified if one neglects terms
of the order |P2

Φ|/E2 and use the QRE approximation,
assuming cos θ = 1 in expressions (22), (23) and (24).
This leads to the IES cross section

dσ
B

R

d q2 =
σ(q2)
4E2

α

2π
P (z, L0)A(z, cm) , (26)

where z is defined in (21) and

A(z, cm) =
12
ζ

cmax∫
−cm

d c−U
z[(1 + z)K − (1 − z)c−]2

K[(1 + z)2 − (1 − z)2c2−]2
,

U =
χ1

4E2 − χ2
1

16E4 − m2
π

4zE2 (27)

represents the acceptance factor (see the end of the previ-
ous section) as it follows from the comparison between the
IES cross sections (21) and (26). To write down A(z, cm)
the following notations were used:

K =

√
1 − δ2

z2 [(1 + z)2 − (1 − z)2c2−] , (28)

χ1

4E2 =
z[1 + z − 2Kc− + (1 − z)c2−]

(1 + z)2 − (1 − z)2c2−
,

δ2 =
m2

π

4E2 ,

cmax(z, cm) =
(1 + z)g√

(z − (1 − z)g)2 − (1 + z)2δ2
,

g =
zcm[(1 + z)K(cm) + (1 − z)cm]

(1 + z)2 − (1 − z)2c2m
− 1 − z

2
.

At fixed values of cm, the quantity cmax depends on
the squared pion invariant mass q2 = 4E2z. If z is small
enough (this situation corresponds to the radiation of a
very hard collinear photon with the energy fraction (1−z)
by the electron) cmax, as formally defined by (28), can
approach −cm and became even smaller. Because selection
rule (5) forbids any values of cmax smaller than cm, it is
necessary to substitute the upper limit of integration on
the right–hand side of (27) by max[cmax, −cm]. If not,
the formal calculation in (27) leads to negative values for
the acceptance factor at small z, as one can see from from
Fig. 1 for cm = cos 20o and z ≈ 0.1, while really it equals
to zero at such z–values. Note that in the framework of the
QRE approximation one can use also energy conservation
for events with θ+ = π − θm

E(1 + z) = E−(cmax) + E+(c+ = −cm)

in order to obtain the analytical form of cmax on the Born
level.

If cm = 1, 3–momentum conservation in process (1)
requires cmax(z, 1) = 1 as well. In this case

K(cm) =

√
1 − 4δ2

z
, g =

(1 + z)K(cm) − 1 + z

4
,

and it is easy to see that cmax(z, cm), as given by (28),
satisfies this requirement.

In principle, the acceptance factor A(z, cm) may be
computed analytically by means of Euler’s substitution
on the right–hand side of (27)

c− =
t2 − a2

2t
, K =

δ(1 − z)(t2 + a2)
2zt

,
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Fig. 1. Acceptance factor defined by (27) for different values of cm

dc− =
(t2 + a2)dt

2t2
, a2 =

z2 − δ2(1 + z)2

δ2(1 − z)2
.

By definition, A(z, 1) = 1 and for cm < 1 always A(z,m)
< 1.

We leave the task of the analytical integration of the
acceptance factor in general case aside and first only note
that the limit δ → 0 (that is, of course, not the case for
DAΦNE) can be used to control our calculations. In this
limiting case

A(z,K = 1, 1) = 12z2

1∫
−1

dx(1 − x2)
[1 + z + (1 − z)x]4

= 1 .

The acceptance factor as a function of the pion squared
invariant mass is shown in Fig. 1 for θm = 10o and θm =
20o. We see that the acceptance factor A(z, cm) is close to
unity in a wide z-range, but decreases very rapidly with
the pion invariant mass.

Finally, let us note that two representations (21) and
(26) for the IES cross section can be obtained also by
inserting the QRE form of the leptonic tensor

α

4π2

d3k

ω
Lγ

µν(p1, p2, k)

→ α

2π
P (z, L0)

dz

z
q2

(
1
2
g̃µν +

2z2

q2 p̃1µp̃1ν

)
into (6).

4 Radiative corrections

If events with e+e−π+π− final state are rejected, only
photonic RC have to be taken into account. These cor-
rections include contributions due to virtual and real soft
and hard photon emission. To calculate them we use the
QRE approximation from the very beginning.

4.1 Soft and virtual corrections

The soft and virtual corrections are the same for both,
unrestricted and restricted pion phase space, and the cor-
responding contribution can be found by the simple sub-
stitution

α

2π
P (z, L0) →

( α

2π

)2
CS+V ,

CS+V = ρP (z, L0) + D(Ls, L0, z) + N(z) (29)

in the right–hand sides of (21) and (26). As a result, we
have

dσ
S+V

F

dq2 =
σ(q2)
4E2

( α

2π

)2
CS+V ,

dσ
S+V

R

dq2 =
dσ

S+V

F

dq2 A(z, cm) . (30)

All the logarithmically enhanced contributions to
CS+V are contained in the first two terms in (29) and
were first found in [16]3. The third term in (29) describes
the non–logarithmic contributions [26]. Finally, we obtain

ρ = 4(Ls − 1) ln∆ + 3(Ls + ln z) +
2π2

3
− 9

2
,

Ls = ln
4E2

m2 ,

D(Ls, L0, z) =
1 + z2

1 − z
L0

[
(L0 − 2Ls − ln z) ln z +

π2

3

−2Li2(z)
]
+

1 + 2z − z2

2(1 − z)
L0 +

4z ln z

1 − z
Ls ,

N(z) = − 1
1 − z

− 8z ln z

1 − z

+2z
[
ln2(1 − z) +

ln2 z

1 − z

]
3 There is a misprint in the expression for ρ given in [16].

The correct expression includes an additional π2 term
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+
π2

6

(
4z + 6 − 5

1 − z

)
+

(
4z − 6 +

5
1 − z

)
Li2(z) , (31)

where ∆E (∆ � 1) is the maximum energy of a soft
photon, and

Li2(x) = −
x∫

0

dy

y
ln(1 − y) .

4.2 Two hard photon emission along the electron
and positron direction

Concerning the contribution from additional hard pho-
ton emission, we divide it into three pieces. The first one
is responsible for the radiation of an additional photon
with energy ω2 along the positron beam direction (pro-
vided that a collinear photon with energy ω1 is emitted
along the electron beam direction). To calculate it we in-
troduce the angular auxiliary parameter θ′

0 � 1 and use
the QRE approximation to describe the radiation of both
photons. The calculations are the same for restricted and
unrestricted pion phase space and do not affect the accep-
tance factor (as in the case of virtual and soft corrections).
Using the subscript F to indicate the cross-section for the
unrestricted phase space, the result reads

dσH
1F

dq2 =
σ(q2)
4E2

∫ 1−∆

y0

( α

2π

)2
P (x, L0)P (y, L′

0)
dy

y
,

L′
0 = ln

E2θ′2
0

m2 , x = 1 − ω1

E
, y = 1 − ω2

E
, (32)

where q2 = 4E2xy is fixed. The maximum value of the
photon energy ω2 can be obtained from restriction (3),
taking into account that, for the events under considera-
tion, the QRE kinematics (cos θ1 = 1, cos θ2 = −1, θ1,2
are polar angles of photons) gives

Ω = ω1 + ω2, |K| = ω1 − ω2, → ω2 <
ηE

2
, y0 = 1 − η

2
.

(33)
Because of the smallness of the parameter η, only terms
singular at y = 1 contribute to the integral on the right–
hand side of (32). Moreover, we can substitute x with z,
neglecting terms of order η as compared with unity (be-
cause q2 = 4E2z = 4E2xy), and perform an elementary
integration over y, obtaining

dσ
H

1F

dq2 =
σ(q2)
4E2

( α

2π

)2
P (z, L0)2(L′

0 − 1) ln
η

2∆
,

dσ
H

1R

dq2 =
dσ

H

1F

dq2 A(z, cm). (34)

4.3 Two hard photons emitted
along the electron directions

The second contribution to the radiative corrections
caused by an additional hard photon emission corresponds

to the radiation of two hard collinear photons (each of
them with energy larger than ∆E) by the electron, pro-
vided both are emitted within the narrow cone of opening
angle 2θ0 along the electron beam direction. This contri-
bution also does not affect the acceptance factor, and the
result can be written with the same accuracy as (30) and
(32)

dσ
H

2F

dq2 =
σ(q2)
4E2

( α

2π

)2
C

H

,

dσ
H

2R

dq2 =
dσ

H

2F

dq2 A(z, cm) ,

C
H

= B1(z,∆)L2
0 + B2(z,∆)L0 + B3(z,∆) . (35)

Functions B1(z,∆) and B2(z,∆) were first calculated in
[27]

B1(z,∆) =
1
2
P2θ(z) +

1 + z2

1 − z

(
ln z − 3

2
− 2 ln∆

)
,

B2(z,∆)=3(1 − z) +
(3 + z2) ln2 z

2(1 − z)
− 2(1 + z)2

1 − z
ln

1 − z

∆
,

(36)
where P2θ(z) is the θ–term of the second order electron
structure function (see, for example, [28])

P2θ(z) = 2
[
1 + z2

1 − z

(
2 ln(1 − z) − ln z +

3
2

)
+

1
2
(1 + z) ln z − 1 + z

]
.

Function B3(z,∆) was calculated in [26] and reads

B3(z,∆) =
4z

1 − z
ln

1 − z

∆
− 4z

3(1 − z)
− π2

6
4z
3

+
(

−17
3

+
28

3(1 − z)
− 8

3(1 − z)2

)
ln z

+
3 − 24z + 54z2 − 48z3 + 7z4

6(1 − z)3
ln2 z

+
(
1 − 7z

3

)
Li2(1 − z) + J ,

J =

1−z∫
0

z2 + (1 − x)4

xλ(1 − x)2

1∫
0

dt

t
L(t, x, z) +

z + x

2(1 − x)

× L1(x, z) +
xλ − 3z
2(1 − x)2

L2(x, z)

 dx, (37)

where the logarithmic functions L, L1 and L2 are defined
as follows

L(t, x, z)

= ln
(1 − x)

√
F (t, x, z) + tx(z − xλ) + λ(1 − x)2

2
(
1 + λt

xz

)
λ(1 − x)2

,

λ = 1 − x − z,
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L1(x, z)

= ln
(x + z))

√
F (1, x, z) + λ(z − xλ) + x(x + z)2

2zλ
,

L2(x, z)

= ln
(1 − x)

√
F (1, x, z) + x(z − xλ) + λ(1 − x)2

2λ(1 − x)2
,

F (t, x, z) = λ2(1 − x)2 + 2txλ(z − xλ) + t2x2(x + z)2 .

The integral over x in the expression for J diverges
when x → 0 and x → 1 − z. But the structure of the
integral is such that these divergences compensate each
other, and this can be seen by taking into account that:

i) integral over t converges,

ii) lim
x→0

z2 + (1 − x)4

xλ(1 − x)2
L(t, x, z)

= − 1 + z2

x(1 − z)
ln

t(1 − z)
xz

,

iii) lim
x→1−z

z2 + (1 − x)4

xλ(1 − x)2
L(t, x, z)

=
1 + z2

λ(1 − z)
ln

t(1 − z)
(1 − x − z)z

. (38)

The quantity J can then be computed numerically
with appropriate precision. Note also that the integral
over t on the right–hand side of (37) can be computed
analytically (see also [29]). i.e.

1∫
0

dt

t
L(t, x, z) =

1
2
L2

2(x, z) + Li2

(
2xz
h

)

+ Li2

(
−2x2λ

h

)
+ Li2

(
− λ

xz

)
,

h = λ(1 − x)2 + x(z − xλ) + (1 − x)
√

F (1, x, z) .

4.4 Emission of one hard collinear and one hard wide
angle photon with unrestricted pion phase space

The third, least trivial, contribution into the RC caused by
two hard photon emission is connected with events when
one photon with energy ω1 is collinear and the other (with
energy ω2) is radiated at angles between π−θ′

0 and θ0. For
such events, constraints (3) and (4) are somewhat tangled,
and one needs to choose convenient variables to disentan-
gle them and to determine the photon phase space. In
spite of the obvious fact that these constraints concern
only the photons, their respective contribution to the RC
affects the acceptance factor given by (27). The physi-
cal reason for such a behaviour is that now (in contrast
with previous cases) the 3–momenta of photons and pions
do not lie in the same plane even if the QRE kinematics
(k1 = (1 − x)p1) is applied.

Nevertheless, the QRE approach for the description of
collinear photons allows to simplify the form of the cross
section and to disentangle all the kinematical restrictions.

In accordance with this approach, the starting point for
our calculation of the differential cross section, suitable for
the unrestricted pion phase space case, is the following

dσ
H

3F =
σ(q2)
4E2

α

2π
P (x, L0)Lγ

µν(xp1, p2, k2)

×g̃µν
α

4π2

dxd3k2

xω2
, (39)

d3k2

ω2
= 2πω2dω2dc2 , c2 = cos θ2 , x = 1 − ω1

E
,

where θ2 is the polar angle of the non–collinear photon.
Since our aim is to derive the differential distribution in
the squared pion invariant mass q2, it is convenient to use
the relation between q2 and c2 to avoid the integration
over c2 on the right–hand side of (39). In addition, it is
convenient to introduce the total photon energy Ω instead
of ω2

q2 = 4E(E − Ω) + 2ω1ω2(1 − c2),

ω2 = Ω − ω1, dc2 → dq2

2ω1ω2
,

dω2 = dΩ . (40)

In this case in the lepton tensor Lγ
µν the electron mass

can be neglected. Thus, the differential cross–section has
the following form

dσH
3F

dq2 =
σ(q2)
4E2

( α

2π

)2
{
P (x, L0)

[
2q4

xu1u2
(41)

− 2q2
(

1
xu1

+
1
u2

)
+

xu1

u2
+

u2

xu1

]
dω1dΩ

ω1(E − ω1)

}
,

u1 = −2k2p1 = −4E2Ωz

ω1
,

u2 = −2k2p2 = −4E
ω1

[ω1(Ω − ω1) − EΩz],

Ωz = Ω − E(1 − z) .

It is useful to rewrite the expression in curly brackets
in a form which is convenient for the integration over ω1
and Ω{

−L0 − zE2L0

(E − ω1)2
+

[2z − (1 + z)L0]E
E − ω1

+

[2(1 + z2)L0 − 4z − (1 − z)2]E2 − (1 − z)(Ω − 2ω1)E
ω1(Ω − ω1) − EΩz

}
×dω1dΩ

EΩz
,

where we neglect terms which do not contain in the de-
nominator the small quantity Ωz, which is of order ηE,
as one can see below from the expressions for Ωmin and
Ωmax.

Our task now is to define the integration region on the
right–hand side of (41), which is determined by restric-
tions (3) and (4) for the event selection, as well as by the
inequalities

−c′
0 < c2 < c0 , E∆ < ω1 < Ω −E∆, c′

0 = cos θ′
0, (42)
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limiting the possible angles of the non-collinear photon
and energies of the collinear one. Restriction (3) defines
the maximum value of Ω, whereas restriction (4) defines
the minimum value of ω1 at fixed Ω

Ωmax = E(1 − z)
(
1 +

η

2

)
,

ωmin =
2EΩz

Ω − |K|c0 ,

|K| =
√

Ω2 − 4EΩz. (43)

To obtain the minimum value of Ω we use the first
relation in (40) at the minimum possible value of ω2 = ∆E
and c2 = c0

Ωmin∆(1 − c0) = 2E[Ωmin − E(1 − z)]

which leads to

Ωmin = E(1 − z)
(
1 +

∆(1 − c0)
2

)
. (44)

From the condition c2 > −c′
0 it follows also that

ω− < ω1 < ω+,

ω± =
Ω

2

[
1 ±

√
1 − 4EΩz

Ω2

(
1 +

1 − c′
0

2

)]
. (45)

Finally, inequality c2 < c0 reads: if the values of Ω′s are
such that

Ω ≤ Ωc , Ωc = E(1 − z)
(
1 +

(1 − c0)(1 − z)
8

)
then

ω1 > ω+ or ω1 < ω−,

ω± =
Ω

2

[
1 ±

√
1 − 8EΩz

Ω2(1 − c0)

]
. (46)

To derive the integration region we have to combine
consistently all constraints (42)–(46) on ω1 and Ω, and
such combination leads to

ωmin < ω1 < ω− and ω+ < ω1 < Ω − ∆E,

Ωmin < Ω < Ω∆ , Ω∆ = E(1 − z)(1 + ∆) ,

ωmin < ω1 < ω− and ω+ < ω1 < ω+, Ω∆ < Ω < Ωc,

ωmin < ω1 < ω+, Ωc < Ω < Ωmax. (47)

The integration region defined by the inequalities (47) is
shown in Fig. 2.

The integration with respect to ω1 and Ω on the right–
hand side (40) over the region (47) can be performed an-
alytically, and the list of necessary integrals is∫

dω1dΩ

EΩz
= (1 − z)

(
2 − ln

1 + ξ

ξ

)
,

ξ =
η

(1 − c0)(1 − z)
,

Fig. 2. The integration region with respect to ω1 and Ω, as
given by inequalities (47)

∫
dω1dΩ

(E − ω1)Ωz
= − ln z ln ξ + Li2(1 − z) − Li2(−ξz)

+Li2(−ξ) − Li2

(
−1 − z

z

)
,∫

Edω1dΩ

(E − ω1)2Ωz
=

1
z

[
−(1 + z) ln z − (1 − z) ln

1 + ξz

ξ

]
,∫

(Ω − 2ω1)dω1dΩ

[ω1(Ω − ω1) − EΩz]Ωz
= −π2

6
− 1

2
ln2 1 − c0

2

+ ln
η

2∆
ln

(1 − c0)(1 − c′
0)

4
− 2Li2(−ξ),∫

Edω1dΩ

[ω1(Ω − ω1) − EΩz]Ωz
=

1
1 − z

[
π2

2
+

1
2
ln2 1 − c0

2

− ln
η

2∆
ln

(1 − c0)(1 − c′
0)

4
− ln2 ξ

]
. (48)

Using these integrals we can write the correspond-
ing contribution to the IES cross-section from the events
presently considered, as follows

dσ
H

3F

dq2 =
σ(q2)
4E2

( α

2π

)2
[2P (z, L0)G1 + L0G2 + G3] ,

G1 =
π2

2
+

1
2
ln2 1 − c0

2
− ln

η

2∆
ln

(1 − c0)(1 − c′
0)

4
− ln2 ξ ,

G2 = (1 − z)
[
−2 + ln

(1 + ξ)(1 + ξz)
ξ2

]
+ (1 + z)

×
[
(1 + ln ξ) ln z + Li2(−ξz) + Li2

(
−1 − z

z

)

−Li2(−ξ) − Li2(1 − z)

]
,
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G3 = −(1 − z)
(
π2

3
− ln2 ξ

)
+ 2Li2(−ξ) (49)

+2z
[
Li2(1 − z) − Li2(−ξz) − Li2

(
−1 − z

z

)]
.

We would like to emphasize that only the part of the
IES cross section, defined by (49), has a non–trivial de-
pendence on the physical parameters θ0 and η, which de-
termine the main requirements for the event selection.

4.5 Emission of one hard collinear and one hard wide
angle photon with restricted pion phase space

Consider now the situation with restricted pion phase
space. Unfortunately, the calculations in this case are not
so simple and cannot be performed analytically. Neverthe-
less, the dependence on the unphysical auxiliary parame-
ters ∆ and θ′

0, which have to vanish in final result for total
RC, can be extracted.

Our starting point is the following representation for
the differential cross section corresponding to the QRE
approximation (by analogy with (39))

dσ
H

3R =
12σ(q2)
4E2q2ζ

α2

8π2P (x, L0)
dx

x
Lγ

µν(xp1, p2, k2)

×(−p̃−µp̃−ν)
d3k2

ω2

dϕ−
2π

Hdc− ,

H =
|p−|2

(2E − Ω)|p−| + E−[ω1c− + (Ω − ω1)c2− ]
,

c2− = c2c− + s2s− cos (ϕ2 − ϕ−) ,

s2 = sin θ2, (50)

where ϕ2 is the azimuthal angle of the non–collinear pho-
ton.

The experience of previous calculations in the case of
unrestricted pion phase space suggests that, in order to
express the pion energy via angles and photon energies,
we can use Ω = E(1 − z), neglecting only small terms of
order η as compared with unity. Therefore, we have

E− =
2Ez(Ā − K̄B̄)

Ā2 − B̄2 ,

K̄ =

√
1 − δ2

z2 (Ā2 − B̄2) ,

Ā = 1 + z ,

B̄ = (1 − x)c− + (x − z)c2− , (51)

and with the same accuracy

H =
2z(ĀK̄ − B̄)2

K̄(Ā2 − B̄2)2
, E+ = E(1 + z) − E− . (52)

In the limiting case when the energy of the non–col-
linear photon approaches zero (x = z), H becomes twice
the corresponding value entering, under integral sign, into
the expression for the acceptance factor (27)

lim
x→z

H = Hs =
2z[(1 + z)K − (1 − z)c−]2

K[(1 + z)2 − (1 − z)2c2−]2
. (53)

The upper limit of the c− variation has to be deter-
mined from the 3–momentum conservation, provided that
θ+ = π − θm, that is

−|p+|cm + |p−|c− + E[1 − x + (x − z)c2] = 0 , (54)

where one has to use expressions for E− and E+ to find
|p+| and |p−| as given by (51) and (52).

Contracting the indices on the right–hand side of (50)
and using relations (40) we arrive at the distribution over
the squared di–pion invariant mass

dσ
H

3R

dq2 =
12σ(q2)
4E2ζ

( α

2π

)2
P (x, L0)

× dω1dΩ

(E − ω1)ω1

TH

2
d(ϕ2 − ϕ−)

2π
dc− ,

x = 1 − ω1

E
,

T = −δ2

z

[
(q2 − xu1)2 + (q2 − u2)2

xu1u2

]
+

χ1(q2 − u2)
u1u2

+
χ2(q2 − xu1)

xu1u2
− x2χ2

1 + χ2
2

xu1u2
. (55)

To advance further, one must integrate first over c−
because the upper limit cmax depends on c2 (as it follows
from (54)), and in its turn c2 is a function of q2 and of
the variables ω1 and Ω. In the general case we cannot
integrate analytically, even to write the analytical expres-
sion for cmax is a problem. But it is necessary to prepare
the expressions which can then be integrated numerically.
Therefore, the dependence on the unphysical parameters
∆ and θ′

0 has to be extracted.
For this goal, note first that ∆E is the minimum pos-

sible energy for the non–collinear photon. Therefore, in
order to extract the ∆–dependence it is sufficient to in-
vestigate the limit ω2 → 0. In this limiting case x = z,
and we can use (53) for the term H. Moreover, the 3–
momentum conservation (54) becomes the same as in the
Born approximation, and its solution cmax(ω2 → 0) coin-
cides with the expression given in (28).

Next, we select terms in the expression for T that are
singular in this soft limit, because only such terms lead to
the ∆–dependence via ln∆. From the list of integrals (48)
and the expression for u1, u2 (see (41)), it is easy to un-
derstand that only the terms containing the product u1u2
in the denominator can induce such a dependence. Taking
into account also that, in this limiting case, χ2 = q2−zχ1,
the necessary terms can be written in the following form

Ts =
2U16E2

u1u2
=

2E3z(1 − z)2U
Ωz[ω1(Ω − ω1) − EΩz]

(56)

(for the definition of U see (27)). To extract the ln∆–
dependence we apply the standard subtraction procedure
and rewrite the cross section (55) as the sum of its hard
and soft parts

dσ
H

3R

dq2 =
dσ

Hh

3R

dq2 +
dσ

Hs

3R

dq2 , (57)
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where

dσ
Hs

3R

dq2 =
12σ(q2)
4E2ζ

( α

2π

)2
P (z, L0)

dω1dΩTsHs

2E2z(1 − z)
dc− , (58)

and the upper limit of c− variation in (58) is defined by
(28). The hard part of the cross section on the right–hand
side of (57) is not singular at ω2 → 0, whereas the inte-
gration of the soft part over the region (47) induces all ∆–
dependence. Using the corresponding formula in the list
of integrals (48) we present the soft part of cross section
(55) in the form

dσ
Hs

3R

dq2 =
σ(q2)
4E2

( α

2π

)2
P (z, L0)G1A(z, cm) , (59)

where G1 is defined in (49).
It is worth noting that this soft part absorbs also all the

dependence on the angular auxiliary parameter θ′
0. That is

the reason why the hard part of the cross section depends
on the physical parameters only and can be computed
numerically. The soft part (58) of the cross section has
to be added to the other contributions into the RC to
eliminate the dependence on the unphysical parameters
in the total RC.

5 Total radiative correction

The total contribution from radiative corrections to the
Born cross section in the case of unrestricted pion phase
space is represented by the sum

dσ
RC

F

dq2 =
dσ

S+V

F

dq2 +
dσ

H

1F

dq2 +
dσ

H

2F

dq2 +
dσ

H

3F

dq2 , (60)

whereas for the case of restricted phase space we have

dσ
RC

R

dq2 =
dσ

S+V

R

dq2 +
dσ

H

1R

dq2 +
dσ

H

2R

dq2 +
dσ

Hs

3R

dq2 +
dσ

Hh

3R

dq2 . (61)

The two auxiliary parameters, the infrared cut–off ∆
and the collinearity angle θ′

0, enter into the individual
terms on the right–hand sides of (60) and (61) in the same
combination

2P (z, L0) ln∆

[
2(Ls − 1) − (L′

0 − 1)

−(L0 − 1) + ln
θ2
0θ

′2
0

16

]
, (62)

(here and below we use the expansion of c0 and c′
0). Ac-

cording to the definition of the large logarithms L0, Ls

and L′
0 (see (17), (31) and (32)), the expression in square

brackets in (62) equals to zero, and, therefore, the total
RC depends only on physical parameters and can be writ-
ten, in the case of unrestricted phase space, as

dσ
RC

F

dq2 =
σ(q2)
4E2

α

2π
P (z, L0)δ

RC

F ,

δ
RC

F =
α

2π
F0 + L0F1 + F2

P (z, L0)
,

F0 =
1
2
L2

0P2θ(z) + P (z, L0)
[
Ls

(
3
2

+ 2 ln
η

2

)
+ ln

4
θ2
0

(
3
2

+ 2 ln
η

zθ0

)
− 2 ln2 ξ − 2 ln

η

2

+3 ln z +
5π2

3
− 9

2

]
,

F1 =
3 − 8z + z2

2(1 − z)
− 2(1 + z)2

1 − z
ln(1 − z)

+
[

4z
1 − z

+ (1 + z)(1 + ln ξ)
]
ln z

+
1
2
(1 + z) ln2 z +

1 + z2

1 − z

(
π2

3
− 2Li2(z)

)
+(1 − z) ln

(1 + ξ)(1 + ξz)
ξ2 + (1 + z)

×
[
Li2(−ξz) + Li2

(
−1 − z

z

)

−Li2(−ξ) − Li2(1 − z)

]
,

F2 = (1 − z) ln2 ξ − 3 + 4z
3(1 − z)

+
4z

1 − z
ln(1 − z)

+
[
−2z ln ξ +

3 − 18z + 7z2

3(1 − z)2

]
ln z + 2z ln2(1 − z)

+
3 − 12z + 30z2 − 36z3 + 7z4

6(1 − z)3
ln2 z

+
π2

6

(
4 +

14z
3

− 5
1 − z

)
+Li2(z)

(
4z − 6 +

5
1 − z

)
+

(
1 − z

3

)
Li2(1 − z)

+2Li2(−ξ)

−2z
[
Li2(−ξz) + Li2

(
−1 − z

z

)]
+ J . (63)

As mentioned in the Introduction, the IES Born cross
section and its RC factorize into the low energy pion pair
production cross–section, σ(q2), and a term of a pure elec-
trodynamical origin. This latter term depends on the mea-
sured pion invariant mass q2 and on the physical param-
eters η and θ0 which define the rules for the IES.

The z–dependence of the total radiative correction to
the Born cross section (21),δ

RC

F , is shown in Fig. 3. Note
that the contribution of the non–logarithmic terms to δ

RC

F
equals parametrically to α/(2πL0), which is of order 10−4,
as the relative contribution of terms proportional to P2

Φ/
4E2 and θ2

0/6 in the Born cross section (see (20)). That is
why the exact calculation of the Born IES cross-section
should be complemented with the radiative corrections
calculated with the inclusion of non–logarithmic contri-
butions.
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Fig. 3. The full first order radiative correction to the Born
cross section (21) for the case of unrestricted pion phase space,
as defined by (63)

Similarly to (63), we can write the complete radiatively
corrected cross-section for the case of restricted pion phase
space in the form

dσ
RC

R

dq2 =
σ(q2)
4E2

α

2π
P (z, L0)A(z, cm)δ

RC

R +
dσ

Hh

3R

dq2 , (64)

where

δ
RC

R =
α

2π
F0 + L0F1R + F2R

P (z, L0)
,

F1R = F1 − G2 ,

F2R = F2 − G3 . (65)

Because the factor σ(q2)/4E2 enters into the last term
at the right–hand side of (64) also, the total RC in this
case has a factorized form as well.

There exists one more contribution caused by two hard
photon emission when neither photon is emitted within
the narrow cone along the the electron beam direction but,
nevertheless, the collinear condition (4) is satisfied. This
contribution cannot be calculated by the QER approach
and has to be evaluated by other methods. In particu-
lar, the double bremsstrahlung lepton current tensor can
be taken in limit m → 0. To our understanding, due to
the strong constraint (3) on the event selection, the corre-
sponding contribution is small enough and does not affect
the IES cross section on the one per cent level. Neverthe-
less, the theoretical evaluation of this contribution should
be done and we hope to compute it elsewhere.

6 Pair production contribution
into the IES cross section

The above considerations for the photonic radiative cor-
rections to the IES cross section are appropriate if e+e−
π+π− final states are excluded from the analysis. If not,

there is an additional contribution caused by hard initial–
state radiation with e+e− pair production [16]. The main
part of this contribution arises due to collinear kinemat-
ics. In the framework of the NLO approximation, where
only logarithmically enhanced terms are kept, the corre-
sponding cross section can be written as

dσ
e+e−(c)
F

dq2 =
σ(q2)
4E2

( α

2π

)2 [
P1(z)L2

0 + P2(z)L0
]

,

dσ
e+e−(c)
R

dq2 =
dσ

e+e−(c)
F

dq2 A(z, cm) , (66)

where the functions P1(z) and P2(z) can be extracted from
the corresponding results for small–angle Bhabha scatter-
ing cross–section, given in [30]. We present them here for
completeness, i.e.

P1(z) =
1 + z2

3(1 − z)
+

(1 − z)(4 + 7z + 4z2)
6z

+ (1 + z) ln z,

P2(z) = −107
9

+
136
9

z − 2
3
z2 − 4

3z
− 20

9(1 − z)

+
2
3

(
−4z2 + 5z + 1 +

4
z(1 − z)

)
ln(1 − z)

+
1
3

(
8z2 + 5z − 7 − 13

1 − z

)
ln z − 2

1 − z
ln2 z

+4(1 + z) ln z ln(1 − z) − 2(3z2 − 1)
1 − z

Li2(1 − z) .

Within the NLO accuracy, one has to compute also
the contribution caused by the semicollinear kinematics
of the e+e− pair production, when the final state electron
belongs to the narrow cone along the electron beam direc-
tion while the positron does not. The corresponding part
of the leptonic tensor was derived in [31], and has the form

Le+e−
µν = − α2

4π3

d3k+d x(1 + x2)
ε+(1 − x)2sv1

×L0

{[
s2 + v2

1

2
+

q2v2

(1 − x)2

]
g̃µν

+
2q2

(1 − x)2
(p̃2µp̃2ν + k̃+µk̃+ν)

}
,

where k+ (ε+) is the 4 – momentum (energy) of the non–
collinear positron, x is the energy fraction of the collinear
electron and v1,2 = −2p1,2k+.

For unrestricted pion phase space, the differential cross
section can be written as follows

dσ
e+e−(s)
F

dq2 =
σ(q2)
4E2

( α

2π

)2
L0

dΩdx

Ωz

× (1 + x2)[(1 − x − z)2 + z2]
(1 − x)4

, (67)

Neglecting terms of order m/E, we can integrate over the
region shown in Fig. 2 with the substitution ω/E → x.
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Fig. 4. The radiative correction to the IES Born cross section
caused by e+e−–pair production

In addition to the list of integrals (48), it is necessary to
compute the following ones∫

dx dΩ

(1 − x)3Ωz
=

(1 − z)2ξ
2z(1 + zξ)

+
1 − z2

2z2

(
1 + ln

1 + zξ

ξ

)
−1 + z2

2z2 ln z ,∫
dx dΩ

(1 − x)4Ωz
=

(1 − z)(3 + z)
3z3 +

(1 − z)3

6z3(1 + zξ)2

− (1 − z)2(2 + z)
3z3(1 + zξ)

− 1 + z3

3z3 ln z

−1 − z3

3z3 ln
1 + zξ

ξ
. (68)

Using integrals (48), (68) and the definition (67), the
contribution of the semicollinear kinematics of pair pro-
duction into the IES cross section can be written in the
form

dσ
e+e−(s)
F

dq2 =
σ(q2)
4E2

( α

2π

)2
L0S(z, ξ) ,

S(z, ξ)) = (1 − z)
{
ln

ξ

1 + ξ
− 2

3

[
1 +

(1 − z)2ξ
(1 + zξ)2

+
2(1 + z + z2)

z
ln

1 + zξ

ξ

]}
+2(1 + z)

[ (
ln ξ − 2

3z
(1 − z + z2)

)
ln z

+Li2(−zξ) + Li2

(
−1 − z

z

)
−Li2(1 − z) − Li2(−ξ)

]
. (69)

The contribution of e+e− pair production into the IES
cross section for the case of unrestricted pion phase space

now reads

dσ
e+e−
F

dq2 =
σ(q2)
4E2

α

2π
P (z, L0)δ

e+e−
F ,

δ
e+e−
F =

α

2π
P1(z)L2

0 + (P2(z) + S(z, ξ))L0

P (z, L0)
. (70)

with the function δ
e+e−
F shown in Fig. 4. In the case of

restricted pion phase space, the differential distribution
over the pion squared invariant mass can be written, in
analogy with (55), in the following form

dσ
e+e−(s)
R

dq2 =
12σ(q2)
4E2ζ

( α

2π

)2
L0

(1 + x2)d xdΩ

(1 − x)4Ωz

×TpHp

2
dc−

d(ϕ̃+ − ϕ−)
2π

, (71)

where the integration region in x and Ω is the same as in
(67). Here, we use the following notation

Tp = −δ2

z2 [z2 + (1 − x − z)2] + xχ̃2

+(1 − x − z)χ̃+ + χ̃2
2 + χ̃2

+ ,

χ̃2 =
χ2

4E2 ,

χ̃+ =
2k+p−
4E2 ,

Hp =
2z(ÃK̃ − B̃)2

K̃(Ã2 − B̃2)2
,

Ã = A,

B̃ = xc− = (1 − x − z)c+− ,

c+− = c̃+c− + s̃+s− cos (ϕ̃+ − ϕ−) ,

c̃+ = cos θ̃+ ,

s̃+ = sin θ̃+ ,

and θ̃+, ϕ̃+ are polar and azimuthal angles of the final
non-colinear positron.

For the further integration on the right–hand side of
(71) with respect to the angular pion phase space, one
must determine the upper limit of c− variation. It depends
on q2, x, Ω and cos (ϕ̃+ − ϕ−) and can be obtained as a
solution of the equation

−|p+|cm + |p−|c− + E(x + (1 − x − z)c̃+) = 0 , (72)

taking into account that

E− =
2Ez(Ã − K̃B̃)

Ã2 − B̃2
, E+ = E(1 + z) − E− .

The total contribution of e+e−–pair production into
IES cross section for the case of restricted pion phase space

dσe+e−
R

dq2 =
dσ

e+e−(c)
R

dq2 +
dσ

e+e−(s)
R

dq2 (73)

has no singularity and can be calculated numerically.
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We have considered in the above the contribution of
kinematic regions where at least one collinear photon or
an electron–positron pair is radiated by the initial elec-
tron. DAΦNE conditions allow to select and detect also
the same events when the collinear particles are emitted
by the initial positron. Therefore, all the cross sections
derived above have to be doubled.

7 Conclusion

The success of precision studies of the hadronic cross sec-
tion in electron–positron annihilation through the mea-
surement of radiative events [18,21,22] relies on the
matching level of reliability of the theoretical expecta-
tions. The principal problem is the analysis of radiative
corrections corresponding to realistic conditions for event
selection.

In previous work [20] we discussed briefly an inclu-
sive approach to the measurement of the hadronic cross
section at DAΦNE in the region below 1 GeV by the ra-
diative return method, for the case in which the radiated
photon remains untagged. This approach requires an ex-
act knowledge of the final hadronic state and a precise
determination of its invariant mass. Some additional con-
straints have to be imposed to make the detection of the
ISR photon redundant and to avoid any uncertanties in
the interpretation of the selected events. These additional
constraints imply also the precise measurement of the pion
3–momenta. The KLOE detector at DAΦNE offers a very
promising possibility to realize such an inclusive approach
to the scanning of the hadronic cross section by the ISR
events.

In this paper we compute the corresponding ISR Born
cross section and the radiative corrections to it in the
framework of the QRE approximation. It is shown that
this approximation is quite appropriate, even at the Born
level, and provides high accuracy for the IES cross section.
The cases of unrestricted and restricted pion phase space
are considered. In the first case the photonic contribution
to the RC is calculated analytically with the NNLO accu-
racy and the contribution caused by e+e−–pair production
within the NLO. The photonic RC is large and negative in
a wide range of pion invariant masses. The physical reason
for such behaviour of the photonic RC is very transparent:
the phase space of additional real photon is restricted con-
siderably by the constraints (3) and (4), and the respec-
tive positive contribution cannot compensate the negative
contribution due to the virtual correction. The large abso-
lute value of the first order photonic correction indicates
unambiguously that the second order RC has to be eval-
uated. Moreover, the increase of the soft part of the RC
(when z grows and approaches unity) requires summation
of the leading RC to all orders.

If the entire phase space for photons and e+e−–pairs
is allowed, this problem is solved by the ordinary Drell–
Yan–like representation in electrodynamics [32,33] with
the exponential form of the electron structure functions
[28,34]. For the tagged collinear photon events without

any constraints on the phase space of additional particles,
the corresponding representation was derived in [16], but
the case considered here requires special investigation be-
cause of two non–trivial constraints (3) and (4) on the
event selection. We hope to consider this problem else-
where.

The RC caused by e+e−–pair production is positive
and small, as compared with the absolute value of the pho-
tonic correction. Only in the region near threshold (small
z), where the cross section is very small, it approaches ap-
proximately the same value. So, we conclude that the RC
due to pair production described by (70) is adequate, and
it must be taken into account to guarantee the one per
cent accuracy.

In the case of restricted pion phase space, we derived
the analytical form of the acceptance factor for the Born
cross section and the part of RC which includes contribu-
tions due to vitrual and real collinear photons and e+e−
pair. Even the choice of the detected pion angles between
20o and 160o gives a value of the acceptance factor very
close to unity, providing good statistics at all values of the
hadron invariant mass. Concerning the contribution into
the IES cross section caused by the semicollinear kine-
matics for the double photon emission and pair produc-
tion, the respective acceptance factor cannot be calculated
analytically. In this case formulae suitable for numerical
calculation are given.

One of the advantages of the IES approach discussed
in this paper is a considerable decrease of the FSR back-
ground. The corresponding contribution into the IES cross
section is suppressed by factors of order θ2

0 due to the
collinear restriction (4) on event selection, therefore we
can ignore any RC to the FSR events and evaluate this
background only at the Born level. The same is valid
for the contribution caused by the ISR–FSR interference.
Note that, for the tagged photon setup, the corresponding
background is quite large and, in order to obtain the one
per cent accuracy [19], one needs evaluate the radiative
corrections to it. If events with e+e−π+π− final state can-
not be excluded by the experimental selection, the back-
ground due to the double photon mechanism of π+π−–pair
production has to be evaluated as well. To our understand-
ing, this background contains the same suppression factor
θ2
0. In addition, restriction (3) selects very specific kine-

matics and does not allow to reach the region where the
virtualities of both intermediate photons are small, and
the corresponding cross section is the largest. In fact, due
to this restriction, at least, one of the photons becomes
far off-shell (with virtuality of the order −q2). Thus, we
expect that double photon mechanism contributes at the
level of the RC to the FRS and cannot affect the IES cross
section at the one per cent level.
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